
92

Computer Notes Dr. Namita Mittal, CSU, Jaipur Campus

Shastri 4th Semester

Computer Science

Unit: 4th

ARRAY IN C LANGUAGE

An array in C is a collection of variables of the same type, stored in contiguous

memory locations. It allows you to store multiple values in a single variable and

access them using an index. The index starts from 0.

For example, you can create an array of integers called numbers that can hold 5

integers by writing:

Example

int numbers[5];

then store values in each element of the array by specifying the index in square

brackets:

Example

numbers[0] = 10;

numbers[1] = 20;

numbers[2] = 30;

numbers[3] = 40;

numbers[4] = 50;

To access a specific element of the array, you can use the index in square brackets

as well:

Example

printf("The second element of the array is: %d", numbers[1]);

This will output "The second element of the array is: 20".

You can also initialize the array when you define it:

Example

93

Computer Notes Dr. Namita Mittal, CSU, Jaipur Campus

int numbers[] = {10, 20, 30, 40, 50};

You can use loops to iterate through the elements of an array, for example, a for

loop:

Example

for(int i=0;i<5;i++)

printf("%d ",numbers[i]);

Arrays are useful when you need to work with a large number of similar data and

can make your code more efficient and easier to read.

TYPES OF ARRAYS

There are several types of arrays in C, the most common are:

1. One-dimensional arrays: These are the most basic type of arrays in C. It can

store multiple values of the same data type, in a single variable. It allows you to

store a fixed number of elements, and each element is identified by its index.

Here's an example of a one-dimensional array of integers:

Example

int numbers[5] = {1, 2, 3, 4, 5};

One-dimensional Arrays: Array manipulation; Searching insertion

In C language, an array is a collection of elements of the same type, stored in

contiguous memory locations. A one-dimensional array is a linear collection of

elements, where each element can be accessed by its index.

Here are some common operations that can be performed on one-dimensional arrays:

• Array manipulation: This involves manipulating the elements of an array,

such as traversing, sorting, or reversing the array. For example, the following

code shows how to traverse an array and print its elements:

Example

int myArray[5] = {1, 2, 3, 4, 5};

 int size = sizeof(myArray) / sizeof(myArray[0]);

 for (int i = 0; i < size; i++)

94

Computer Notes Dr. Namita Mittal, CSU, Jaipur Campus

{

printf("myArray[%d] = %d\n", i, myArray[i]);

}

• Searching: This involves finding an element in an array, given its value or

index. For example, the following code shows how to search for an element

in an array using linear search:

Example

int myArray[5] = {1, 2, 3, 4, 5};

int size = sizeof(myArray) / sizeof(myArray[0]);

 int searchValue = 3;

int index = -1;

for (int i = 0; i < size; i++)

{

 if (myArray[i] == searchValue)

 {

index = i; break; }

}

if (index != -1)

{

printf("The value %d is found at index %d\n", searchValue, index);

 }

 else

{

 printf("The value %d is not found in the array\n", searchValue);

}

95

Computer Notes Dr. Namita Mittal, CSU, Jaipur Campus

• Insertion: This involves inserting an element into an array at a specific

position. For example, the following code shows how to insert an element into

an array at index 2:

Example

int myArray[5] = {1, 2, 3, 4, 5};

 int size = sizeof(myArray) / sizeof(myArray[0]);

 int newValue = 6; int index = 2;

for (int i = size - 1; i >= index; i--)

{

myArray[i + 1] = myArray[i];

}

 myArray[index] = newValue; size++;

The above insertion operation increases the size of the array by one, but in C

language arrays are static, which means once the size of an array is defined it cannot

be changed. It's possible to use dynamic memory allocation to overcome this

limitation.

C language: Deletion of an element from an array

deletion of an element from an array refers to removing an element from a specific

position in the array and shifting the remaining elements to fill the gap.

Here is an example of how to delete an element from an array at a specific position:

Example

int myArray[5] = {1, 2, 3, 4, 5};

int size = sizeof(myArray) / sizeof(myArray[0]);

int index = 2;

for (int i = index; i < size - 1; i++)

{

96

Computer Notes Dr. Namita Mittal, CSU, Jaipur Campus

 myArray[i] = myArray[i + 1];

 }

size--;

In this example, an element located at index 2 is deleted. The for loop starts from the

element located at the index specified for deletion and copies the next element to the

current position, doing this for all the remaining elements, thus effectively deleting

the element at the specified index.

It's worth noting that, the above deletion operation decreases the size of the array by

one, but in C language arrays are static, which means once the size of an array is

defined it cannot be changed. It's possible to use dynamic memory allocation to

overcome this limitation.

It's important to note that, the deletion of an element from an array can also be done

by using a library function like memmove() which is a part of the string.h library.

It's also worth noting that, when you delete an element from an array, the indexes of

the elements following the deleted element change.

C Language: Finding the largest/smallest element in an array

Finding the largest or smallest element in an array is a common task that can be

achieved using different algorithms. Here are two examples of how to find the largest

and smallest element in an array using C language:

• Finding the largest element:

Example

int myArray[5] = {1, 2, 3, 4, 5};

 int size = sizeof(myArray) / sizeof(myArray[0]);

int largest = myArray[0];

for (int i = 1; i < size; i++)

{

 if (myArray[i] > largest)

{

97

Computer Notes Dr. Namita Mittal, CSU, Jaipur Campus

largest = myArray[i];

}

 }

printf("The largest element is %d\n", largest);

In this example, we initialize a variable "largest" with the first element of the array,

and then use a for loop to traverse through the array. In each iteration, we compare

the current element of the array with the "largest" variable, if the current element is

greater than the "largest" variable, we update the "largest" variable with the current

element. At the end of the loop, the "largest" variable contains the largest element of

the array.

• Finding the smallest element:

Example

int myArray[5] = {1, 2, 3, 4, 5};

int size = sizeof(myArray) / sizeof(myArray[0]);

int smallest = myArray[0];

for (int i = 1; i < size; i++)

 {

if (myArray[i] < smallest)

 {

smallest = myArray[i];

}

} printf("The smallest element is %d\n", smallest);

In this example, we initialize a variable "smallest" with the first element of the array

and then use a for loop to traverse through the array. In each iteration, we compare

the current element of the array with the "smallest" variable, if the current element

is smaller than the "smallest" variable, we update the "smallest" variable with the

current element. At the end of the loop, the "smallest" variable contains the smallest

element of the array. both the above examples use a simple linear search algorithm

98

Computer Notes Dr. Namita Mittal, CSU, Jaipur Campus

that has a time complexity of O(n), where n is the number of elements in the array.

There are other algorithms like sorting that can be used to find the largest and

smallest elements in an array with better time complexity.

2. Multi-dimensional arrays: These arrays can store multiple arrays and are also

called a matrix. Each element in a multi-dimensional array is identified by its row

and column number. They are also known as two-dimensional arrays or 2D

arrays. Here's an example of a 2-dimensional array of integers:

Example

int matrix[3][3] = { {1, 2, 3}, {4, 5, 6}, {7, 8, 9}};

Two-dimensional arrays, Addition/Multiplication of two matrices

a two-dimensional array is an array of arrays. It is an array where each element is

itself an array. Two-dimensional arrays are often used to represent matrices, which

are used in many mathematical and scientific applications.

Here are examples of how to perform the addition and multiplication of two matrices

using a two-dimensional array in C language:

• Addition of two matrices:

Example

#define ROW 3

#define COL 3

void addMatrices(int A[][COL], int B[][COL], int C[][COL])

{

for (int i = 0; i < ROW; i++)

 {

 for (int j = 0; j < COL; j++)

 { C[i][j] = A[i][j] + B[i][j];}

}

 }

99

Computer Notes Dr. Namita Mittal, CSU, Jaipur Campus

In this example, we have defined two matrices A and B of size ROW x COL and a

resultant matrix C. The function addMatrices takes these matrices as input and

performs the addition of the corresponding elements of A and B and stores the result

in C.

• Multiplication of two matrices:

Example

#define ROW1 3

 #define COL1 4

 #define ROW2 4

 #define COL2 2

 void multiplyMatrices(int A[][COL1], int B[][COL2], int C[][COL2])

{

for (int i = 0; i < ROW1; i++)

{

 for (int j = 0; j < COL2; j++)

{

 C[i][j] = 0; for (int k = 0; k < COL1; k++)

 {

 C[i][j] += A[i][k] * B[k][j];

}

 }

 }

 }

In this example, we have defined two matrices A and B of size ROW1 x COL1 and

ROW2 x COL2 respectively, and a resultant matrix C. The function multiply

matrices take these matrices as input and perform the multiplication of the matrices

A and B and stores the result in C.

100

Computer Notes Dr. Namita Mittal, CSU, Jaipur Campus

It's worth noting that, the number of columns of the first matrix must be equal to the

number of rows of the second matrix for multiplication to be possible. Also, for

matrices A, B and

Null terminated strings as array of characters

In C language, a string is a sequence of characters, and a null-terminated string is a

special kind of string that is terminated with a null character ('\0'). A null-terminated

string is often represented as an array of characters in C.

Here is an example of how to create and use a null-terminated string in C:

Example

char myString[] = "Hello, world!";

printf("The string is: %s\n", myString);

In this example, we have created a null-terminated string named "myString" and

assigned the value "Hello, world!" to it. The string is an array of characters, and the

last element of the array is the null character '\0', which indicates the end of the

string.

We can also use the %s format specifier with the printf() function to print a null-

terminated string. The printf() function automatically detects the null character and

stops printing the characters after it.

We can also use the string library function to manipulate the null-terminated string

like:

• strlen(string) which returns the length of the string

• strcat(string1,string2) which concatenates two strings

• strcmp(string1,string2) which compares two strings

It's worth noting that, In C language, a string is not a built-in data type, but an array

of characters that ends with a null character. It's also worth noting that, when

working with strings, we should be careful to avoid buffer overflows and other

security vulnerabilities.

101

Computer Notes Dr. Namita Mittal, CSU, Jaipur Campus

3. Array of Array: A Array of the array is an array of arrays, where each element

of the main array is another array. They are also called arrays of arrays. The size

of the sub-arrays can be different from each other.

Example

int Var[3][] = { {1, 2, 3}, {4, 5, 6, 7}, {8, 9}};

4. Dynamic Array: C programming language doesn't have built-in support for

dynamic arrays but with the help of pointers, we can implement a dynamic array.

Here, the user can add as many elements as they want to the array. The number

of elements of the dynamic array can be changed at runtime.

All of these types of arrays have different use cases and each has its own set of

advantages and disadvantages. Arrays are powerful tools for storing and

manipulating data, but it's important to choose the right type of array for the specific

task at hand to take advantage of their strengths and avoid their weaknesses.

some examples of arrays in C that demonstrate how they can be used:

1. One-dimensional array example: This example shows how to create and

initialize a one-dimensional array of integers and how to access its elements:

Example

int numbers[5] = {1, 2, 3, 4, 5};

 printf("The first element of the array is: %d\n", numbers[0]);

 printf("The second element of the array is: %d\n", numbers[1]);

This will output "The first element of the array is: 1" and "The second element

of the array is: 2".

2. Multi-dimensional array example: This example shows how to create and

initialize a 2-dimensional array of integers and how to access its elements using

nested loops:

Example

int matrix[2][3] = { {1, 2, 3}, {4, 5, 6}};

for (int i = 0; i < 2; i++) { for (int j = 0; j < 3; j++)

102

Computer Notes Dr. Namita Mittal, CSU, Jaipur Campus

 {

printf("matrix[%d][%d] = %d\n", i, j, matrix[i][j]);

}

 }

This will output:

Example

matrix[0][0] = 1

 matrix[0][1] = 2

 matrix[0][2] = 3

matrix[1][0] = 4

matrix[1][1] = 5

 matrix[1][2] = 6

3. Array of Array example: This example shows how to create and initialize a var

array and how to access its elements using nested loops:

Example

int var[3][] = { {1, 2, 3}, {4, 5, 6, 7}, {8, 9}};

 for (int i = 0; i < 3; i++)

{

 for (int j = 0; j < (sizeof(var[i])/sizeof(var[i][0])); j++)

 {

 printf("var[%d][%d] = %d\n", i, j, var[i][j]);

}

 }

This will output:

var[0][0] = 1

103

Computer Notes Dr. Namita Mittal, CSU, Jaipur Campus

var[0][1] = 2

var[0][2] = 3

var[1][0] = 4

var[1][1] = 5

var[1][2] = 6

var[1][3] = 7

var[2][0] = 8

var[2][1] = 9

Dynamic Array example: This example shows how to create a dynamic array using

pointers and malloc function and how to access its elements using pointer arithmetic

dynamic array in C:

Example

#include <stdio.h>

#include <stdlib.h>

int main()

 {

 // create a dynamic array of 5 integers

 int* dynamicArray = (int*)

malloc (5 * sizeof(int));

 // set the values of the array

 dynamicArray[0] = 10;

 dynamicArray[1] = 20;

 dynamicArray[2] = 30;

 dynamicArray[3] = 40;

 dynamicArray[4] = 50;

104

Computer Notes Dr. Namita Mittal, CSU, Jaipur Campus

 // print the values of the array

 printf("The first element of the array is: %d\n", *dynamicArray);

 printf("The second element of the array is: %d\n", *(dynamicArray + 1));

 // resize the array to hold 10 integers

 dynamicArray = (int*) realloc(dynamicArray, 10 * sizeof(int));

 // set the values of the additional elements

 dynamicArray[5] = 60;

 dynamicArray[6] = 70;

 dynamicArray[7] = 80;

 dynamicArray[8] = 90;

 dynamicArray[9] = 100;

 // print the values of the additional elements

 printf("The sixth element of the array is: %d\n", *(dynamicArray + 5));

 printf("The seventh element of the array is: %d\n", *(dynamicArray + 6));

 // free the memory allocated for the array

 free(dynamicArray);

 return 0;

}

In this example, we first create a dynamic array of 5 integers by allocating memory

using the malloc function. We then set the values of the array using pointer

arithmetic. Next, we resize the array to hold 10 integers using the realloc function

and set the values of the additional elements using pointer arithmetic. Finally, we

print the values of the array and free the memory allocated for the array using the

free function. It's important to note that while dynamic arrays are more flexible than

static arrays, they also require more memory overhead. To ensure good performance,

you should use dynamic arrays only when necessary and make sure to carefully

manage the memory that you allocate.

105

Computer Notes Dr. Namita Mittal, CSU, Jaipur Campus

Some Questions for practice

1. What is an array in C?

2. How do you declare an array in C?

3. What are the different types of arrays in C?

4. How do you initialize an array in C?

5. How do you access elements of an array in C?

6. How do you use the index operator in C arrays?

7. What is the difference between a one-dimensional and a two-dimensional

array in C?

8. How do you use a multi-dimensional array in C?

9. How do you pass an array to a function in C?

10. How do you return an array from a function in C?

11. How do you use the sizeof operator with arrays in C?

12. How do you use the for loop with arrays in C?

13. How do you use the while loop with arrays in C?

14. How do you use the do-while loop with arrays in C?

15. How do you use the strlen function with arrays in C?

16. How do you use the memset function with arrays in C?

17. How do you use the memcpy function with arrays in C?

18. How do you use the qsort function with arrays in C?

19. How do you use the bsearch function with arrays in C?

20. What are the best practices for using arrays in C?

